
THESIS

CREATION OF A COMPUTER GENERATED
SEMI-AUTONOMOUS ENTITY ABLE TO

 FUNCTION IN AN AMPHIBIOUS ENVIRONMENT

by

Thomas Jay Sobey

 September 1995

 Co-Thesis Advisors:  David R. Pratt
John S. Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California



Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
    REPORT NUMBER

10. SPONSORING/ MONITORING
      AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
      OF REPORT

18. SECURITY CLASSIFICATION
      OF THIS PAGE

19. SECURITY CLASSIFICATION
      OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Sobey, Thomas J.

September 1995 Master’s Thesis

Unclassified Unclassified   ULUnclassified

  83

 CREATION OF A COMPUTER GENERATED SEMI-
AUTONOMOUS ENTITY ABLE TO FUNCTION IN AN
AMPHIBIOUS ENVIRONMENT

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

The problem is that current programs used to generate Semi-Automated Forces (SAF) are unable to
fully simulate amphibious military operations in littoral regions. SAF development has focused on three
separate paradigms: ground, air, and sea entities. Each set of entities has very different physical behaviors.
For actions in littoral regions to be completely simulated, an entity must be able to cross between the sea
and ground paradigms. This type of entity is necessary to simulate an amphibious assault.

The approach taken was to extend the ModSAF (Modular Semi-Automated Forces) program to
include a “low-resolution” model of the Assault Amphibious Vehicle (AAV). The behaviors necessary to
simulate an amphibious assault were also added.

 The result of this work was the creation of a computer generated semi-automated entity able to
function in an amphibious environment. In the 2D display of ModSAF, the physically based behavior of
the entity was indistinguishable from a pure ground entity or a pure sea entity. Through comparisons with
water and ground entities, the vehicle was shown to behave like a water vehicle in water and then to
transition to, and behave like, a ground vehicle on land.

Semi-Autonomous Forces, Amphibious, Assault Amphibious Vehicles, AAV,
ModSAF, Amphibious Landing, Littoral, Modeling, Simulation



ii



iii

Approved for public release; distribution is unlimited

CREATION OF A COMPUTER GENERATED
SEMI-AUTONOMOUS ENTITY ABLE TO

 FUNCTION IN AN AMPHIBIOUS
 ENVIRONMENT

Thomas Jay Sobey
Captain, United States Marine Corps

M.A., Webster University, 1992
B.B.A., Texas A&M University, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:
Thomas Jay Sobey

Approved By:

David R. Pratt, Co-Thesis Advisor

John S. Falby, Co-Thesis Advisor

Ted Lewis, Chairman
Department of Computer Science



iv



v

ABSTRACT

The problem is that current programs used to generate Semi-Automated Forces (SAF)

are unable to fully simulate amphibious military operations in littoral regions. SAF

development has focused on three separate paradigms: ground, air, and sea entities. Each

set of entities has very different physical behaviors. For actions in littoral regions to be

completely simulated, an entity must be able to cross between the sea and ground

paradigms. This type of entity is necessary to simulate an amphibious assault.

The approach taken was to extend the ModSAF (Modular Semi-Automated Forces)

program to include a “low-resolution” model of the Assault Amphibious Vehicle (AAV).

The behaviors necessary to simulate an amphibious assault were also added.

 The result of this work was the creation of a computer generated semi-automated

entity able to function in an amphibious environment. In the 2D display of ModSAF, the

physically based behavior of the entity was indistinguishable from a pure ground entity or

a pure sea entity. Through comparisons with water and ground entities, the vehicle was

shown to behave like a water vehicle in water and then to transition to, and behave like, a

ground vehicle on land.



vi



vii

TABLE OF CONTENTS

I. INTRODUCTION ...................................................................................................  1

A. BACKGROUND ............................................................................................ 1

B. PROBLEM ...................................................................................................... 1

C. SCOPE OF WORK ......................................................................................... 2

D. ORGANIZATION .......................................................................................... 3

II. PREVIOUS WORK ................................................................................................  5

A. TERMINOLOGY ........................................................................................... 6

B. HISTORICAL AND CURRENT COMPUTER FORCE GENERATORS ... 6
1. SIMNET ................................................................................................ 7
2. BBN SAF 4.3.3 ..................................................................................... 8
3. ODIN SAF ............................................................................................. 9
4. ModSAF ................................................................................................ 9
5. BDS-D CGF .......................................................................................... 9
6. IST SAF ............................................................................................... 10
7. IFOR/WISSARD ................................................................................. 11
8. CCTT SAF .......................................................................................... 12
9. SWEG/SUPPRESSOR ........................................................................ 12
10. Janus .................................................................................................... 13

C. LOCAL THESIS WORK ............................................................................. 14
1. Autonomous Agents ............................................................................ 14
2. ModSAF Extensions ........................................................................... 14

D. SUMMARY .................................................................................................. 15

III. ModSAF DESCRIPTION .....................................................................................  17

A. DESCRIPTION ............................................................................................. 17
1. Introduction ......................................................................................... 17
2. Overview ............................................................................................. 17
3. Communications .................................................................................. 18

B. ModSAF SOFTWARE ARCHITECTURE .................................................. 19



viii

C. ModSAF COMMAND AND CONTROL .....................................................20
1. ModSAF Objects and Entities ..............................................................21
2. Tasks ....................................................................................................21
3. Task Frames .........................................................................................23
4. Missions ...............................................................................................23
5. Task Manager .......................................................................................24
6. Task Arbitration ...................................................................................24

D. FINITE STATE MACHINES .......................................................................25

E. INTERACTION WITH ModSAF .................................................................25

F. SUMMARY ...................................................................................................25

IV. ASSAULT AMPHIBIOUS VEHICLE .................................................................. 27

A. OVERVIEW ..................................................................................................27

B. BRIEF HISTORY ..........................................................................................28

C. APPROACH ..................................................................................................29

D. IMPLEMENTATION ....................................................................................30
1. AAV .....................................................................................................30
2. LHA .....................................................................................................31

E. LIMITATIONS ..............................................................................................31

F. SUMMARY ...................................................................................................32

V. AMPHIBIOUS ASSAULT MISSION ................................................................... 33

A. OVERVIEW ..................................................................................................33

B. MISSION SELECTION ................................................................................34
1. Types of Amphibious Operations ........................................................34
2. Simplified Mission ...............................................................................34

C. APPROACH ..................................................................................................36
1. FINITE STATE MACHINES ..............................................................36

D. IMPLEMENTATION LIMITATIONS .........................................................37



ix

VI. FUTURE VEHICLE .............................................................................................. 39

A. OVERVIEW ..................................................................................................39

B. TACTICAL ADJUSTMENT ........................................................................40
1. AAAV ..................................................................................................40
2. LCAC (Hovercraft) ..............................................................................40

C. SIMULATION REQUIREMENTS ...............................................................41

VII. SUMMARY AND CONCLUSIONS ..................................................................... 43

A. SUMMARY ...................................................................................................43

B. RESULTS OF WORK ...................................................................................43
1. Assault Amphibious Vehicle ...............................................................43
2. Amphibious Assault Mission ...............................................................44

C. CONCLUSIONS ...........................................................................................44

D. RECOMMENDATIONS FOR FUTURE WORK ........................................44

APPENDIX A: AAV VEHICLE ......................................................................................45

A. PROTOCOL CONSTANTS ..........................................................................45

B. PARAMETER FILE ......................................................................................46

C. LOAD PARAMETER FILE ..........................................................................51

D. REFERENCE PARAMETER MACRO ........................................................51

E. ADD TO GUI ................................................................................................51

F. ADD ICONS ..................................................................................................51

G. PHYSICAL DATABASE .............................................................................52

APPENDIX B: LHA VEHICLE .......................................................................................55

A. PROTOCOL CONSTANTS ..........................................................................55

B. PARAMETER FILE ......................................................................................55



x

C. LOAD PARAMETER FILE ..........................................................................60

D. REFERENCE PARAMETER MACRO ........................................................61

E. ADD TO GUI ................................................................................................61

F. ADD ICONS ..................................................................................................61

G. PHYSICAL DATABASE .............................................................................62

LIST OF REFERENCES ..................................................................................................63

INITIAL DISTRIBUTION LIST .....................................................................................67



xi

LIST OF FIGURES

1. From [ROBA94a] Shared Databases ...............................................................19
2. ModSAF Library Modules ...............................................................................20
3. AAVP7A1 ........................................................................................................27
4. Seven Steps to Create a Vehicle in ModSAF...................................................30
5. New 2D AAV Symbols....................................................................................31
6. Tarawa Class LHA...........................................................................................32
7. LHA / AAV / DI Unit ......................................................................................35
8. Finite State Machine Hierarchy........................................................................37
9. Advanced AAV Prototype ...............................................................................39



xii



xiii

ACKNOWLEDGEMENT

There are many people to whom I owe a debt of gratitude for their help in the

completion of this work. First, I wish to thank Professor David Pratt and Professor John

Falby for guiding me into the study of semi-autonomous forces. Second, I would like to

thank the Marine Corps for providing the incentive and having the need for an accurate

Assault Amphibious Vehicle. Thirdly, I would like to thank the Thai Hut for providing

proper nourishment throughout the entire process.

Finally, I would like to thank my lovely wife, Terri, for the unwavering support and

encouragement that makes all things possible.



xiv



1

I.  INTRODUCTION

“The time always comes in battle when the decisions of statesmen and of generals
can no longer effect the issue and when it is not within the power of our national
wealth to change the balance decisively. Victory is never achieved prior to that point;
it can only be won after the battle has been delivered into the hands of men who move
in imminent danger of death.” -- S.L.A. Marshall[FMFM95]

A.  BACKGROUND

The question for military forces during peacetime is how to better train for war. The

usual answer is to practice as realistically as possible, as often as possible. The problem is

that practice is expensive in terms of equipment wear, supplies, ammunition, and

occasionally, human life. Yet, to effectively simulate the “imminent danger of death”, one

must come perilously close to making it reality. The Department of Defense (DOD) has

recognized that computer based simulations have the potential of providing the advantages

of realistic training without the dangers.

The United States Marine Corps (a firm believer in putting the enemy in “imminent

danger of death”) has established the Marine Corps Modeling and Simulation Management

Office (MCMSMO) to “provide a dedicated, service-wide, cross-functional activity to

integrate and promote simulation-supported technology throughout the Marine Corps.”

[MCMS94] The effective use of simulation is looked upon as a way to safely and

inexpensively train major subordinate command staffs.

B.  PROBLEM

To create realistic simulations, there must be a large number of participants. Otherwise

the complexity of a wartime situation, with its innumerable factors to consider, is lost. It is

not feasible, nor reasonable, to expect that every participant must be a human connected

into the simulation. Therefore, there must be a way to create a large number of combatants

who behave in a realistic manner. One piece of the puzzle can be provided by semi-



2

automated, computer generated forces which are “entities” that have physically based

behaviors, are able to execute assigned missions, and can react to changing enemy or

terrain situations. These Computer Generated Forces (CGF’s) will provide the bulk of the

combatants in any realistic distributed simulation. A single operator can create and control

many CGF’s. The “smarter” the CGF’s are, (i.e. requiring less human intervention) the

more of them that can be controlled by a single operator. Since the eventual goal is over

300,000 entities involved in a simulation, relatively intelligent CGF’s will be needed.

The United States Army has been working heavily on distributed interactive

simulations for many years. A very large portion of the vehicles that the Army uses have

been modeled already [CERA93a]. Only recently has work begun to create entities for

Marine Corps specific needs. One of the vehicles that had yet to be modeled was the

Assault Amphibian Vehicle (AAV) used exclusively by the Marine Corps to conduct

amphibious assaults. The AAV is unique in that it can operate in two distinct environments:

land and sea. The goal of this work was to create an AAV entity in the ModSAF (Modular

Semi-Automated Forces)[CERA93a] program that demonstrated the ability to cross

between the two environments while maintaining the proper physically based behaviors.

The successful creation of this vehicle has proven the feasibility of simulating amphibious

assaults within a distributed interactive simulation environment.

C.  SCOPE OF WORK

A very large amount of work remains to bring Marine Corps (and Navy) forces into

the realm of realistic modeling and simulation. This study focuses on one critical piece, the

Assault Amphibious Vehicle used exclusively by the United States Marine Corps to project

force ashore in a very up-close and personal manner. The vehicle has been created in

ModSAF using as much previous work as possible. On shore behaviors closely resemble

the M2 Bradley (as current Marine Corps AAV tactical teachings dictate) which is already

modeled in the system. The AAV behavior in ship-to-shore movements is simplified to: (1)

embark onto an amphibious warfare ship, (2) move to an assault position, (3) disembark the



3

static ship, (4) move into an appropriate assault formation (on-line or “wave”), (5) assault

the designated beach, (6) secure the landing area by hastily occupying defensive positions,

and (7) await a new mission (or continue executing already assigned ones).

D.  ORGANIZATION

One goal of this study is to enable its use as a guide to creating entities in ModSAF.

With that in mind, the organization of Chapters IV and V concentrate on the details of how

the entity and its behaviors were modeled. Chapter II describes other work in the area of

computer generated forces to give the user an idea of where this system will fit in. Chapter

III describes the main program used for this study, ModSAF, in greater detail. Chapter VI

discusses the new AAV designs being created and how the tactical behavior of the models

will have to change. Chapter VII summarizes the work done and points out areas which will

require further work.



4



5

II.  PREVIOUS WORK

The need for computer generated forces (CGF’s) is being driven by the Department of

Defense at this time. A modern battlefield potentially has over 300,000 participants. While

it is theoretically possible to have that many participants in vehicle simulators or on

simulation consoles, computer generated entities are the only realistic answer.

The field of computer generated forces encompasses several disciplines. Some degree

of Artificial Intelligence (AI) is often needed for an entity to behave and react in a realistic

manner. Physically based modelling takes more computing power but has inherent

advantages that make the entities more believable. The goal is for humans immersed in a

virtual world to be unable to distinguish between entities which are generated and which

ones have direct human control. The number of human participants and the computing

power required for a large simulation requires networked interactions. The goal (which has

succeeded on a smaller scale of ~2000 entities) is to have forces around the world practice

in a single virtual world [TAMB95]. Some of the forces would actually be operating “in the

field”, some would be immersed in detailed simulators, some would be at computer

consoles, and the majority would be computer generated. The “state” of the world needs to

be updated anytime there is a change at any location which requires fast, real time

networks. As an adjunct to the network, efficient storage of the “state” of the world for fast

traversal and updates requires the latest database techniques. In addition to databases, the

field of visualization is heavily involved, especially when trying to immerse the human into

the simulation.

It would be a massive programming project to be able to do all of these well. Some of

these projects are attempting just that. Unfortunately, these projects must decide their

approach years before an actual product is available. Many of the smaller projects take

novel approaches to one or two aspects of the overall problem. As a result, the best solution



6

will be to use individual “best” solutions to a particular aspect that can also interact through

a common medium. For clarification, this chapter will discuss terminology used, other

current and historical CGF projects with some of their advantages/disadvantages, and some

local thesis work.

A.  TERMINOLOGY

The government and military penchant for acronyms has resulted in a plethora of terms

which mean the same thing. CGF’s (computer generated forces) have already been

mentioned. Other terms which have been used interchangeably are SAFOR (semi-

automated forces), IFOR (intelligent forces), and AFOR (automated forces) [BOOK93]. A

semi-automated force has some human control. The advantage is that one human can

control a large number of SAFORs such as several platoons of tanks or humans. The

interaction required is usually minimal, such as giving them an simple task and they

accomplish it without any help. An IFOR or AFOR requires no human control and is much

harder to simulate. For the remainder of this document, the term CGF will be used

generically for all the above terms.

Another term that needs explaining is DIS. DIS can stand forDistributed Interactive

Simulations in general or as the network protocol for communicating between simulators

[VANB93]. The term DIS-compliant will be used to characterize a system which uses  the

network protocol. DIS should not be confused with DSI which is aDistributed Simulation

Internet. DSI is the wide-area network which connects simulators participating at different

sites together in one simulation [POPE91].

B.  HISTORICAL AND CURRENT COMPUTER FORCE GENERATORS

The idea for autonomous or semi-autonomous agents has its roots in robotics and has

been around for at least as long as science fiction writers. The ability to create an

autonomous intelligent agent would be valuable in many areas of industry and science. The

idea of using semi-autonomous agents to populate avirtual battlefield can be traced to the

SIMNET (Simulation Network) project in 1982 [CERA93a]. Almost all major projects to



7

create computer generated forces have their basis in the work done for SIMNET. The

following non-comprehensive survey of work in the area of computer generated forces

(CGF’s) should provide the reader an idea of the direction of research and approaches being

taken.

1. SIMNET

Any discussion of computer generated forces must begin with SIMNET. The

development of a large-scale network of interactive simulators to train U.S. Army ground

and air vehicle crews was started in 1982 by the Defense Advanced Research Projects

Agency (DARPA) and the U.S. Army. The resulting system proved the feasibility and

applicability of using a Distributed Interactive Simulation for training, research, and

development [VRAB92]. The need for CGF’s comes from the cost factors that limit the

simulation to about 1,000 human beings [TAMB95]. Since a realistic exercise that can train

the upper echelons of command would require many more participants, the remaining

entities must be CGF’s. Not only must the CGF’s be controllable by a few humans, they

must also behave in such a manner that the other participants cannot distinguish between

the humans and the CGF’s.

SIMNET was intended to train individuals as part of M1 tank or M2 Bradley crews

operating in simulators. Other participants could be at terminals or actually in real vehicles

in the field. The system was also designed to be easily extensible for other simulators and

other CGF’s. The software that SIMNET used for its CGF’s is described next.

The advantages of SIMNET are its interaction with networked simulators and the

developmental work in visual simulation. The main disadvantages are the cost of the

simulators and the development software. Many components of the system are special

purpose devices that are difficult to change. Additionally, the need for completely

automated forces with efficient AI ability has not been addressed. The entities modeled are

relatively limited, as are the command/control communication structures. The project was



8

limited to providing lower level training vice higher command training and it has

accomplished that purpose.

2. BBN SAF 4.3.3

Bolt, Beranek, and Newman Inc. (BBN)  SAF 4.3.3 is the latest release of the original

SIMNET-compatible software that generates forces for the SIMNET distributed interactive

simulations. The majority of the software and development team are now part of Loral

Advanced Distributed Simulation (LADS), Inc.

The software runs on Silicon Graphics and MIPS machines. It is written in Kernigan

and Ritchie (K&R) C (a non-object-oriented language) using an object-oriented design.

Like all SIMNET-compatible software, it runs over Ethernet using a DIS “like” protocol.

Much of the DIS protocol was based on the work done for SIMNET. The main emphasis

is close combat and it has entities such as ground maneuver units (armored, mechanized),

dismounted infantry, fixed wing aircraft, and rotary wing aircraft. Units can be simulated

and controlled from the individual level to the battalion level. A single work station can

control up to 50 entities.

BBN SAF uses the same terrain database representation as ModSAF, which will be

described in detail in Chapter III. The interface is an X-based two-dimensional display with

a mouse/keyboard interface. An operator controls entities through the use of Combat

Instruction Sets (CIS’s) and Tactical Emergency (TAC/E) instruction. The operator defines

CIS’s to control each entity’s reaction to battlefield events. The operator does not trigger

the reactions, only battlefield situations trigger the reactions. The operator uses the TAC/E

to temporarily override the CIS parameters. [BOOK93]

The main advantage of this system is that it builds upon the successes of SIMNET

while using a more general software solution. This portion of the software only generates

a 2D display. In SIMNET, another piece of software provides the 3D visualization. The

interface is rather cumbersome, with many menus needed to create/control entities.



9

3. ODIN SAF

Odin SAF, named for the Norse god of war and wisdom, was sponsored by DARPA

and developed by BBN in close cooperation with the Army’s Topographic Engineering

Center (TEC). It leveraged on the SAF technology developed for SIMNET. It can be

considered the second generation of BBN SAF. The Battle of 73 Easting was recreated

using the improved capabilities of Odin SAF. The advantages and disadvantages of this

system are very similar to BBN SAF due to it being an evolution of that software.

[BOOK93]

4. ModSAF

ModSAF (Modular Semi-Automated Forces) is currently up to version 1.5.1 and

subsumes all the functions of BBN SAF and Odin SAF. It, like BBN SAF and Odin SAF,

has been created by the development team at LADS (formerly  BBN). It was developed for

the IFOR/WISSARD (Intelligent Forces / What If Simulation System for Advanced

Research and Development) program with additional support from the United States Army

STRICOM’s (Simulation Training and Instrumentation Command) ADST program

(Advanced Distributed Simulation Technology). The basic idea and architectural construct

is the same as BBN SAF and Odin SAF, however the programming construct is much more

modular and therefore much easier to extend. The program is discussed in detail in Chapter

III.[BOOK93]

5. BDS-D CGF

BDS-D stands for Battlefield Distributed Simulation - Developmental. This program

is also being developed by Loral under the Army STRICOM ADST program. It is based

upon the Simulated Warfare Environment Generator (SWEG), which is discussed below.

The software for modeling entity behavior is being developed by BDM International, Inc.

The long term goal for this software is to expand the functionality of current SAF’s to

include combat support elements and combat service support elements, to better represent



10

dynamic environmental effects on entities behaviors, and to better represent command and

control across multiple echelons.

Entity behavior is modeled using the Action Cognitive Behavior Model (ACBM). The

behavior is controlled by external data files which allows great flexibility during a model

run. Network communications are not DIS-compliant and are not currently planned to be.

The implementation of ACBM code was translated into C from the SWEG Fortran

software. It was scheduled to be translated into C++ at some point. The system runs on a

Sun or Silicon Graphics Workstation. The user interface is standard X-Window Motif and

uses the paradigm of the Five Paragraph Order (OPORD) to control entities. The human

operator gives and receives OPORDs and can issue and receive reports. [BOOK93]

The main advantage of this system is the environmental effects and the ability to add

models and behaviors using external data files. The big disadvantages are its non-DIS-

compliance and the original Fortran architecture. Even though it is being translated into

C++, the design cannot take full advantage of new programming paradigms.

6. IST SAF

The Institute for Simulation and Training (IST) has been tasked by STRICOM to build

a low cost computer force generator. They designed a system that can run on an Intel 386

machine under MS-DOS. The development language is ANSI C with a C++ compiler for

strong type checking. Behaviors are encoded as states within a slightly modified Finite

State Machine (FSM) that runs under an “executive” due to the non-preemptive nature of

MS-DOS. To construct behaviors, a C programmer must work with a Subject Matter Expert

(SME) and carefully design the state to not monopolize the system for too long. [BOOK93]

Communication across the simulation network is run on Ethernet but is not DIS-

compliant. Entities are semi-dynamically load balanced across available simulation

engines and tests have shown the system to degrade gracefully under load. The database

format used is the standard SIMNET polygonal terrain database. All the terrain reasoning,

Line of Sight, and route planning calculations are done based on polygons. This should



11

make an easy transition to dynamic terrain. The user interface is a 2-D plan view display

using a mouse. [BOOK93]

The main advantages of this system are the low-cost hardware and the system

architecture. The disadvantages are the non-DIS-compliance, the non-preemptive

operating system, and the relatively low CPU power. This approach deserves special

attention due to the advances in PC industry which will solve many of these problems while

maintaining the low-cost advantage.

7. IFOR/WISSARD

Intelligent Forces / What If Simulation System for Advanced Research and

Development (IFOR/WISSARD) is an ARPA program to improve autonomous forces for

the Navy Tactical Air domain. It is funding three development efforts: (1) ModSAF (as

discussed in Chapter III), (2) The Concurrent Control (CoCo) SAF by Hughes Research

Lab (HRL), (3) and software based on SOAR (the name is taken from the software’s

architecture cycle of taking a State, applying an Operator, And generating a Result) by a

consortium of universities working together (University of Michigan at Ann Arbor,

Carnegie Mellon University, and ISI). [BOOK93]

ModSAF is used to control and visualize the entities. Both CoCo and SOAR provide

the higher level controls. CoCo uses an arbitration scheme to resolve conflicts between

multiple orders and has, so far, resulted in improved route planning capabilities. It can also

be used together with case-based tools for rapid acquisition of tactics. SOAR originated in

1982 as an AI system and is concurrently used to model human behavior. It “is an attempt

to create a general, uniform architecture to support all the capabilities necessary for general

intelligent behavior, such as knowledge representation, problem solving, planning,

learning, natural language understanding, and interaction with dynamic environments.”

[BOOK93] With ModSAF as the interface and low-level entity controller, CoCo and

SOAR should provide very realistic high-level behaviors. [BOOK93]

This is not one specific software solution, but a combination of several solutions. The

advantages of this system are the capabilities of ModSAF with the AI abilities of CoCo and



12

SOAR. Each of the systems uses DIS protocol to communicate and control. The next step

would be to combine these systems with a networked 3D visualization system, such as

NPSNET (Naval Postgraduate School Networked Vehicle Simulator), and some type of

command/control simulator. The disadvantage of this solution is the need to coordinate

capabilities across software packages.

8. CCTT SAF

The Close Combat Tactical Trainer (CCTT) program to develop the next generation

of Army trainers is led by a team from Loral Federal Systems. The CGF developer is

Science Applications International Corporation (SAIC). The emphasis is on representing

the platforms that form an Army battalion to include; logistics and engineering elements,

fire support of RAG/DAG’s, rotary-wing aircraft, fixed-wing aircraft, and air defense

platforms. [BOOK93]

9. SWEG/SUPPRESSOR

The Simulated Warfare Environment Generator (SWEG) was derived from the

SUPPRESSOR system, originally developed for the Air Force by the Calspan Corporation

from 1978 to 1981. It is a mission level, discrete event simulation system useful for

evaluating electronic combat systems, weapon systems, or tactics in many-on-many

scenarios. SWEG is an incremental modification of SUPPRESSOR version 5.1 to allow it

to interoperate in real-time external hardware and software components. The modification

was done by BDM International Inc., the same company developing BDS-D CGF

described above. [BOOK93]

The software is written in Fortran, however, no assumptions about the entities or the

simulation are made at all. Everything depends on the input data to include: the scenario,

the platforms and systems, tactics, terrain, rules of engagement, command and control, and

the number of sides in the conflict. This completely data driven scenario makes the system

extremely flexible and makes it more of a programming environment rather than a combat

modeler.



13

The terrain is derived from DMA (Defense Mapping Agency) terrain files and

converted into small binary files for generation of a continuous surface defined by a

variable-resolution triangular lattice. Other databases are used to contain information on

each player (TDB - Type Data Base), and the scenario (SDB - Scenario Data Base). The

user interface is batch processing with the results given as statistical models. SWEG is

capable of displaying a graphical view of the scenario as it executes.

The advantages of this system are the data-driven flexibility of each scenario and the

ability to use standard terrain data. The disadvantages are that it was designed for gathering

statistical results vice visualization and that it was written in Fortran with a software

architecture from 1979.

10. Janus

Janus was originally built by Lawrence Livermore National Labs to be an entity-level

simulator. It has been transitioned to TRAC-White Sands for continued development. The

individual entities (weapon systems, vehicles and soldiers) interact in the combat

environment with values derived from real-world tests. The software is written in Fortran

with some C graphics code. It is not completely DIS-compliant but the Naval Postgraduate

School and Rand Corporation have done a proof-of-concept project called JLink (Janus

Linked to DIS) to show that it can be done. The system has been ported to Sun and HP

Workstations and the Army is looking to rewrite it in an Open Systems environment.

[BOOK93]

The terrain data is provided by the Defense Mapping Agency and stored in two files:

one for digitized terrain information, the other for contour lines, grid squares, vegetation,

roads, built-up areas, and rivers. The user controls units through preset plans or directly

during a scenario. The interface is a 2-D display using a mouse.

The advantages of this system are physically-based simulation of entities and the

terrain reading ability. The disadvantages are the old Fortran architecture and the non-DIS

compliance.



14

C.  LOCAL THESIS WORK

1. Autonomous Agents

The Computer Science Department at the Naval Postgraduate School developed and

implemented a three-dimensional simulation system -- NPSNET -- using the Distributed

Interactive Simulation (DIS) protocol. Soon after its development, research work began on

how to incorporate autonomous agents into this three-dimensional world. Two local theses,

“NPSNET: Physically Based, Autonomous, Naval Surface Agents” written by LT John

Hearne [HEAR93], and “Tactical Decision Making in Intelligent Agents: Developing

Autonomous Forces in NPSNET” by CPT Michael Culpepper [CULP92], provided

groundwork in the area of using an external planning agent to provide realistic behaviors

to autonomous agents in NPSNET.

Both Hearne and Culpepper used an expert system tool -- CLIPS -- to develop expert

system shells to replicate behaviors of computer agents in a three dimensional world. LT

Hearne added intelligent, autonomous naval surface ships that incorporated the

complexities of actual ship turning and propulsion dynamics. CPT Culpepper added

autonomous armor units that planned target selection, subordinate missions, and the

cooperative efforts of platoon sized elements. Both developments provided autonomous

agents that react to a changing environment by using expert system rule sets. [HEAR92]

[CULP92]

2. ModSAF Extensions

When LADS released ModSAF 1.0 in December 1993, two Naval Postgraduate

School masters thesis students started working on extending its capabilities. Major Gary M.

McAndrews, USA, addressed the problem of adding company-level missions to increase

the number of forces a single operator can control. ModSAF 1.0 only had the capability to

control platoons or individuals. The result of his work was the proof-of-concept company-

level mission “Occupy an Assembly Area” that can be assigned to a company [MCAN94].

Another student, Major Howard L. Mohn, USA, added the ability for users to utilize a



15

standard Five Paragraph Order (OPORD) to implement mission planning and task

assignment. Through the graphical user interface, a user can input an OPORD and have the

system generate the ModSAF phases [MOHN94].

D.  SUMMARY

The best solution will probably come from an approach similar to the

IFOR/WISSARD program. Their results pick the “best of breed” for AI, physically based

simulation and visualization, and command/control functions. The solution will have to use

the DIS protocol for interfacing and controlling entities. The DIS protocol is the current and

future of networking virtual worlds. It has some problems, but the standard is evolving and

is accepted by almost all large systems in development. There is no one solution for

creating CGFs. The size of the problem will require the combination of many disciplines

and the constant evolution of software as the computer industry continues its exponential

growth in capabilities.



16



17

III.  ModSAF DESCRIPTION

A.  DESCRIPTION

An excellent overview of the ModSAF system can be found in the papers by Calder,

Smith, Courtemanche, Mar and Ceranowicz,ModSAF Behavior Simulation and Control

[CALD93], Andrew Z. Ceranowicz,ModSAF and Command and Control [CERA93b], and

Gary M. McAndrews,Autonomous Agent Interactions in a Real-Time Simulation System

[MCAN94]. A basic overview of the ModSAF system and some of the particular ModSAF

terms are defined in this chapter to aid in understanding the development of the Assault

Amphibious Vehicle (AAV) entity.

1. Introduction

The Modular Semi-Automated Forces (ModSAF) system is a Distributed Interactive

Simulation (DIS) system that portrays Computer Generated Forces (CGF) with realistic

individual and unit behaviors. The system was originally sponsored by the Advanced

Research Projects Agency (ARPA) WISSARD (What If Simulation System for Advanced

Research and Development) project. ModSAF has become the standardized simulation

platform for continued research in the use of Computer Generated Forces by the U.S. Army

Simulation, Training, and Instrumentation Command’s (STRICOM) Advanced Distributed

Simulation Technology (ADST) program. ModSAF is a modular implementation of

previous work conducted in SIMNET under DARPA and ODIN [CALD93].

2. Overview

ModSAF is object oriented standard Kernigan & Ritchie C code. The first release, 1.0

in December 1993, consisted of over 150 library modules and 215,000 lines of code.

ModSAF 1.4 was released in January 1995 and is over one-half million lines of code

[COUR95]. The current version is 1.5.1. It runs on SGI, Sun, MIPS, and IBM RISC 6000

Hardware systems [ROBA94b].



18

The architecture for the system includes three components: The ModSAF Command

Workstation (SAFstation), the ModSAF Simulator (SAFsim), and the ModSAF Logger.

The SAFstation provides the graphical user interface to the operator. The operator can

create and place units, assign missions, and observe the execution of the units from this

station. The operator is given a two dimensional view of the terrain database on which the

exercise is being simulated. The SAFsim simulates the vehicles and units created by the

operator. It provides realistic behaviors to the entities. The Logger is a recorder that records

the states of the Persistent Object Database and the DIS database, and can replay exercises.

[CERA93b]

3. Communications

The Distributed Interactive System concept is defined in Proposed IEEE Standard

Draft, “Standard for Information Technology - Protocols for Distributed Interactive

Simulation Applications”. “DIS is a time and space coherent synthetic representation of

world environments designed for linking the interactive, free play activities of people in

operational exercises.”[STAN93] In a very general sense, computers can share information

about the world (or terrain) and the positions and activities of the entities in the world, with

each computer portraying the world and all its entities simultaneously. The DIS Protocol is

a standardized format to package the necessary information about the entities being

displayed in a DIS environment. ModSAF communicates with other computers in the

simulation by sending and receiving DIS Protocol Data Units (PDUs).

Whereas the DIS protocol provides a way to share the physical state of the world

between computers, ModSAF has its own Persistent Object (PO) Database to retain

information about the entities it is simulating. The PO Database keeps track of information

about a unit including the unit’s current mission and status, the unit’s organization, and the

individual vehicle information for each vehicle in the unit. The ModSAF computers share

command and control and system information via the Persistent Object (PO) Protocol.

[CERA93b]



19

ModSAF maintains two databases (see Figure 1): the DIS Database, and the PO

Database. The DIS Database is a conceptual database, used to share information between

ModSAF and external DIS simulation systems. The PO Database stores internal

information about the world and its entities.

B.  ModSAF SOFTWARE ARCHITECTURE

Since ModSAF was written in K & R C code, it is not object-oriented in the purest

sense of the definition. The ModSAF system replicates the behavior of classes and methods

offered in C++ by utilizing layering and object-based programming techniques.

“Layering is a design methodology in which software modules are grouped into
layers, and software in one layer is restricted to use only functions and services
available in lower layers.... Object-based programming techniques are used to cleanly
separate the subsystems or modules into classes of objects. Each object class is
defined by a data structure and a family of functions which operate on that data
structure.” [CALD93]

The category of software modules that the company assembly mission utilizes falls

into the set of simulation modules. This set of modules provides the behaviors for the

ModSAF entities. Figure 2 lists some of the several different ModSAF library modules.

The first set of modules are behavioral modules. These library modules provide the

SAFSim SAFStation

LOGGER

PO DatabaseDIS Database
Behavioral
State
Command &
Control
System
Information

History
(world state)
System
configurations
Entity
configurations

Entity State
Events

Impact
Collision
Fire
Initialization
Radar
Weather

Shared Databases

NETWORK

Figure 1: From [ROBA94a] Shared Databases



20

behaviors for a vehicle or the components of a vehicle. The turret, hull, and guns of a tank

are each controlled by an individual behavior module. Libraries prefixed with “libv” are

vehicle simulation modules. These modules perform task actions for individual vehicles.

Libraries prefixed with “libu” are unit simulation modules. These modules provide the task

actions for entire units. This is accomplished by the layering and object-based

programming techniques of the ModSAF system.

C.  ModSAF COMMAND AND CONTROL

The architecture selected to replicate command and control of the computer generated

forces provides capabilities, identified as command and control goals, to the developer

[CALD93]. These goals include:

• The capability to create complex missions including preplanned contingency
operations,

• The altering of a mission after assignment,

• An operator’s ability to override the simulation at any time for any unit,

• A defined architecture for unit and individual behaviors,

• A graphical user interface with available missions,

• A defined structure to explain unit and individual behaviors to the user.

Figure 2: ModSAF Library Modules

libgenturret libguns libhulls libifdam
libmissile libmlauncher libradar libtracked
libturrets

libuactcontact libuassault libuataint libuatgrndtrgt
libubingofuel libucap libucommit libudsmnt
libuenemy libuflwrte libuflyrte libuhalt
libumount libuoccpos libuoverwatchmove libupoccpos
libutargeter libutraveling libuebkpckup

libvassess libvataint libvatgrndtrgt libvcap
libvcollide libvecmat libvenemy libvflwrte
libvflygrndavoid libview libvisual libvland
libvmount libvmove libvorbit libvsearch
libvspotter libvtab libvtakeoff libvtargeter
libvterrain libvembark

Component

Dynamics

Unit Level

Control

Vehicle

Control



21

These capabilities allow the user to have finely tuned control of a unit or to have

minimal supervision of a unit during its mission execution.

1. ModSAF Objects and Entities

An object in ModSAF is stored in the PO Database. Objects may include graphical

control measures for a particular unit, individual vehicles, or entire units. Objects which are

simulated by the SAFsim are termed ModSAF entities.

“When a SAFsim simulates a unit, the SAFsim not only creates the SAF entities
(such as a plane) in a unit but also builds a structure corresponding to the unit
hierarchy. The user can then issue commands to the top-level units or drop down the
chain of command to give orders to subordinate units or vehicles. The SAFsim
interprets these orders and then generates the appropriate unit and vehicle behavior
and tactics without further action from the user. However, the user can override or
interrupt any automated behavior.” [MODS94]

The behaviors of units and vehicles is controlled by “tasks” and “task frames”. “A task

is a behavior performed by a ModSAF entity or unit on the battlefield.... Task frames group

a collection of related tasks that run at the same time.” [MODS94] A more detailed

description of tasks and task frames is given in the following sections.

2. Tasks

“The foundation of the ModSAF command and control architecture is the concept
of a task. Most tasks are behaviors performed by units or individuals on the battlefield,
and are used by ModSAF to model the information processing done by its simulated
entities.... There are five types of tasks which are implemented in the ModSAF
system: unit tasks, individual vehicle tasks, reactive tasks, enabling tasks, and
arbitration tasks.” [CALD93]

An individual vehicle task controls the lowest-level actuators of a vehicle. These

actuators control the simulated capabilities of checking intervisibility, target detection,

target identification, target selection, fire planning, collision avoidance, and detection

[MODS94]. The vehicle tasks take inputs from its sensors and other actuators and produce

commands for the physical actuators [CERA93b].

A unit task encapsulates the behaviors of a unit and its individual vehicles for a

particular task. For example, in the ModSAF unit task UTravel (a unit travelling task), the



22

task issues individual vehicle tasks to each member of the platoon, and monitors the

collective status of the unit’s movement. Changes to the current situation or parameter

changes by the operator are handled by the unit task, which may introduce new vehicle

tasks, or terminate individual vehicle tasks that have ended. The concept of issuing lower-

level tasks from the unit level task models the military command and control structure

[CERA93b]. For example, a platoon leader receives an order from his company

commander to move to a location. The platoon leader develops a plan that will collectively

get his unit to that location in a given formation. He then issues the orders to the individual

vehicles to accomplish this mission. ModSAF replicates this command architecture

through the use of unit level tasks.

A reactive task is triggered in response to a change in the environment. Similar to a

platoon drill, the reactive task is a pre-defined set of reactions that a unit or vehicle will

implement in response to a specific environmental change. For example, when assigning a

unit a move task, the operator can set specific parameters of how to react to an enemy force.

The reactive tasks for “Actions on Contact” can be set by the operator as parametric inputs.

The operator can select the enemy vehicle thresholds and the resulting action by the unit.

Suppose the operator decides that if the unit comes under fire by less than three

vehicles it should assault them, but if there are three vehicles or more it should occupy a

defensive position. Also, if the unit is not being fired upon, and there are more than three

enemy vehicles, conduct a contact drill. If there are less than three enemy vehicles do

nothing. These decisions can be input into the parametric entry graphical user interface.

The results of the operators inputs are shown in Table 1. The result is the appearance of

decision making at the lowest level.

Enemy Vehicles \ Situation

Less Than Three Vehicles

Three or More Vehicles

Under Fire

Assault

Occupy Position

Not Under Fire

Contact Drill

No Action

Table 1: Action on Contact



23

Enabling tasks link the execution of the task frames. They are defined within the

mission. Example enabling tasks include continue (continue with the next task frame when

the current one ends), on order (after the previous task frame ends, halt execution until the

operator says to continue), control measure (when a unit hits a graphical control measure

change task frames), or at a certain time execute a task frame. Enabling tasks give the unit

alternative actions to take in response to events the mission developer has foreseen when

developing the mission [CALD93].

3. Task Frames

Related tasks which run concurrently to accomplish an action are termed “task

frames”. A task frame represents a phase of a mission and are defined with associated

parameters. Some of these parameters may be adjusted by the operator to modify the

behavior during the frame [CERA93b] [CALD93]. For example, a platoon conducting a

move operation is operating within a task frame. The task frame includes the movement

task and the reactive tasks for “Actions on Contact”. The reactive parameters may be set by

the operator when assigning the move task frame. As the move task is operating, the

platoon may encounter an enemy unit. The move task will be pushed on a stack while the

reactionary, contact drill, assault, or occupy position task executes. The operator can stop,

change, or override the reaction of the unit during the execution of the move task frame.

“Task frames are typically composed of move, shoot, and react tasks.” [MODS94]

4. Missions

A sequence of task frames collectively form a mission. Before the next frame begins,

the previous frame must have ended. An example mission which includes several separate

tasks would be a platoon assigned to move along a route, attack an objective, and then move

to another location and occupy a position. The attack on the objective will not begin until

the movement along the route has ended. [CALD93]

ModSAF provides platoon level missions for ground vehicle platoons and dismounted

infantry platoons. Some platoon missions may be assigned to a single vehicle. These



24

missions include: “Move”, “Follow a Vehicle”, “Occupy Position”, and “Assault”. One

mission written solely for a ground vehicle platoon is “Bounding Overwatch.” In a

Bounding Overwatch mission, the platoon is split into two sections. One section moves and

the other section stops to cover its movement. Assigning this mission to a single vehicle

would not be in context with the mission parameters. The dismounted platoon missions

include “Mount” and “Dismount.” A platoon must be a dismounted infantry platoon to

perform these missions.

5. Task Manager

The collection of tasks and task frames which combine to form missions are controlled

by the ModSAF Task Manager. The task manager maintains information about prerequisite

tasks and follow-on tasks for every mission. For example, a helicopter is given a move

mission. A prerequisite task would be to “take-off” and a follow-on task may be to “land”.

The task manager maintains these task dependencies and develops a task execution list that

considers the required before and after tasks along with the specified task. It then executes

the tasks in the task execution list order. The task manager also handles the task frame

management for the unit and vehicle tasks. [CALD93]

6. Task Arbitration

Often, more than one task is operating at the same time. These tasks may offer different

commands to the vehicle. In the previous example of a platoon performing a movement that

encounters an enemy force, the move task is setting the move path for each individual

vehicle. Suddenly, a reactive “Action Drill” is initiated in response to making contact with

the enemy. The “Action Drill” task will also give movement paths to each of the individual

vehicles. The vehicles are given two possibly unique paths to follow, and some method of

deconfliction is needed. It is the responsibility of the Task Arbitrator to decide which

movement path to utilize for each vehicle. The Task Arbitrator takes all recommendations

for the control of a particular actuator (movement, fire control, sensors) and then decides,

based on a priority scheme, which task will control that actuator [CALD93].



25

D.  FINITE STATE MACHINES

ModSAF’s unit tasks, vehicle tasks, and some behavioral tasks are implemented using

an “Augmented Asynchronous Finite State Machine” format. The tasks are developed by

separating them into states of a finite state machine. Once the finite state machine (FSM)

is coded, a “finite state machine to C code” conversion utility is called to convert the FSM

to standard K & R C code. The format is asynchronous in that units may generate outputs

in response to a particular event or group of events, and is augmented in that not only does

it keep track of the state of a unit/entity, but it also maintains additional information (in the

PO database) of other private variables besides just the state variables. [ROBA94a]

E.  INTERACTION WITH ModSAF

The ModSAF system can be modified and extended by others to support multiple

behavioral representations and multiple levels of command and control. There are several

different ways to interact with ModSAF. A developer can change existing software

modules or add new software modules, replace entire subsystems, or write separate

programs that communicate with ModSAF through the Persistent Object Database

[CALD93]. The AAV was created by adding it to the physical database, defining its

weapons, ammunition, amphibious ability, and new behaviors (such as ship-to-shore

movement).

F.  SUMMARY

The ModSAF system provides low-level realistic behavior for CGF’s across a DIS

system. The modular software architecture of the system is designed to be extensible and

flexible. The GUI interface allows one operator to have high-level control over many

entities. The shared database paradigm will allow the scalability required for large-scale

battlefield simulations. These capabilities are why ModSAF is the standard simulation

platform for continued research in the use of CGFs by STRICOM’s ADST program.



26



27

IV.  ASSAULT AMPHIBIOUS VEHICLE

A.  OVERVIEW

The simulation entity able to cross paradigms, from land to water (and back), is as

unique in the simulation arena as it is in the real world. The only vehicle capable of being

launched from a ship into the water, assault a beach, and continue on to conduct operations

in the desert is the Assault Amphibious Vehicle (AAV) as shown in Figure 3. At the time

of this study, no ModSAF vehicles are able to behave in this manner.

 The modeling of operations in littoral regions, a specialty of the United States Marine

Corps, requires that this unique vehicle be accurately simulated. The construct of ModSAF

allows vehicles to be added fairly easily. It takes a physical description of each vehicle and

creates the 2D model which behaves within the specified parameters. The end result is an

AAV that is the proper size with respect to all other entities, has the correct armament, can

climb a 60 degree obstacle, can move at 65 kmh (kilometers per hour) on land and 12 kmh

in water, will slow down in rough terrain, and will only drive until its fuel runs out.

Figure 3: AAVP7A1



28

The steps necessary to create the AAV in ModSAF are to be discussed later in the

chapter. An amphibious assault ship was also added to allow the demonstration of a limited

amphibious landing. Its limitations and minimal abilities will also be discussed later.

B.  BRIEF HISTORY

The idea of attacking your enemy from the sea has been around as long as man has

been able to move across water. The first recorded amphibious assault took place in 490

B.C. when the Persians attacked the Greeks at Marathon [RODG37]. Typically, specialized

equipment was not used because opponents had to fight hand-to-hand anyway. Fighting at

sea, on the beaches, or on land was essentially the same. The only difference was whether

or not you would drown if knocked out. When Kublai Khan sent the Mongol hordes against

Japan in 1274 and 1281, they had specialized landing boats and actually attacked against

defended beaches [MARD83]. In 1801, the British at Aboukir Bay in Egypt used

specialized flat-bottom landing craft [RYAN83], as did the Americans in 1849 at Vera

Cruz in the Mexican War [BAUE69].

With the advent of longer range and more accurate weapons, the tricky business of

amphibious assault across defended beaches became even more difficult. Already one of

the most problematic logistical headaches, the better weapons could turn an assault into a

turkey shoot as unprotected landing craft move across the open water and open beaches.

One possible solution was hit upon by a man named Roebling in 1932. His idea was an

aluminum hulled amphibious vehicle which used tracks for propulsion in water and on

land. In 1939, after 7 years of development, the Roebling Alligator could do 25 mph on land

and 8.6 mph in the water. In 1940, the next generation, the Roebling Crocodile, was copied

directly (except using sheet steel instead of aluminum) and became the LVT-1 for military

use. The vehicles have been in use since then and have been through many generations up

to the current version, the AAV7A1. [AASB94]

The latest AAV can move at 45 m.p.h. on land and 8.2 m.p.h. in the water. It can go

over an 8 foot trench, a 3 foot vertical wall, and climb a 60% grade slope. The AAV7A1



29

can safely negotiate a 6 foot plunging surf while fully loaded. It can survive a 10 foot

plunging surf with little damage and has survived (in tests) a 20 foot plunging surf. The

aluminum armor is sufficient for small arms, light machine guns, and artillery shell bursts.

The AAVP7A1 (P for passenger) has a turret containing a M2 .50 Caliber Heavy machine

gun and a Mk19 40 mm automatic grenade launcher. Its main weapon is the contingent of

21 fully combat loaded Marines it can hold in addition to its three crewmen. Once on land,

the vehicle functions as an armored personnel carrier, able to project force deep ashore.

[TECH93]

C.  APPROACH

 One of the basic premises of ModSAF’s design is to allow the addition of new vehicle

types, units, formations, and weapons without having to recompile the program. All of the

previous items are created at run time using “reader” files. A “reader” file is a text file

containing the necessary information in a particular format. To create an AAV from the

ground up would be a daunting task. Specifying all the necessary parameters for abilities,

behaviors, and weapons could take months of work. Whenever creating a new type of

vehicle, the creators of ModSAF recommend that you find a similar vehicle, copy it, and

make the necessary changes [MODS95]. Fortunately for the author, a similar vehicle does

exist, the M2 Bradley Fighting vehicle.

The approach taken was to create an AAV using as much as possible from the M2

Bradley. Additionally, to create the amphibious assault mission discussed in Chapter V, a

ship was also created. ModSAF already had a Dismounted Infantryman (DI) modeled. The

most difficult part was adding the behaviors to enable the DIs to mount onto the AAVs, and

the AAVs to embark upon the ship. The dismounting/disembarking behavior was also

added along with an amphibious assault mission.

The decision to base the new AAV entity upon the already modeled M2 proved to be

a good one. Although lacking the amphibious capability, the similarities in behavior and



30

armament were quite helpful. As discussed below, the change from a strictly land vehicle

to an amphibious one turned out to be fairly simple (if you know where to look).

D.  IMPLEMENTATION

1. AAV

In the ModSAF Software Architecture and Design Overview Document (SADOD),

there is a chapter on how to extend the program for new vehicle types [MODS95]. The

document lists the seven necessary steps, as in Figure 4, and then explains each step in

detail. All the changes made to each file to create the AAV are listed in Appendix A. Due

to the uniqueness of the vehicle, several new object domains, environments, and vehicle

types were added to the protocol. The key part of the changes, where the vehicle is defined

to be amphibious, took place in the parameter file. This is step 2 of Figure 4.

In the parameter file, US_AAVP7_parameters.rdr, the default parameters for the

process that controls the vehicle movement according to terrain (SM_VTerrain) were over-

ridden to not avoid deep water. This one override enabled the vehicle to move across deep

water. The overrides also changed the maximum speed of the vehicle while it is in water.

New symbols were created to represent the individual vehicles and units. These new

symbols are shown in Figure 5.

1. Define the protocol constants of the new vehicle

2. Create or modify the vehicle parameter file

3. Load the parameter file

4. Reference the new parameters

5. Add the vehicle to the graphical user interface

6. Add vehicle and military icons

7. Check the physical database

Figure 4: Seven Steps to Create a Vehicle in ModSAF



31

2. LHA

The LHA (Landing Helicopter Assault) amphibious ship created for use in the

amphibious assault mission has very minimal abilities. Appendix B lists how it was created.

The only behavior (other than defaults) that it has is the ability to move. This is sufficient

for the purposes of this study. As will be discussed in the next chapter, ModSAF does not

have the ability to embark vehicles onto a ship. This behavior was added specifically for

this study.

E.  LIMITATIONS

In the current version of ModSAF (version 1.5.1), there is no way to account for sea-

state. Vehicles on the ground will slow down or speed up according to the roughness of the

terrain. However, vehicles in the water will move at their maximum limits specified for

deep water without regard to how rough the sea is.

The carrying of troops and the embarkation of the vehicle upon another vehicle, such

as the ship in Figure 6, is not currently intrinsic to the vehicle itself. The behavior is

simulated by making the appropriate vehicle or troop disappear and reappear at the right

PVD symbol Military symbol Unit Military symbol

Figure 5: New 2D AAV Symbols



32

time. A programmer could “load” 1000 troops onto the vehicle without the lower,

physically-based, functions protesting.

F.  SUMMARY

The resulting vehicle, an AAVP7A1, moves and shoots in a physically-based manner

on land and on water. The loading of troops onto the AAV, and the AAV onto a ship, is a

simulation work-around that is not physically-based. The ship created, a Tarawa Class

LHA, has very limited abilities and is not a model for emulation. It serves the function of

transporting AAVs and DIs to the debarkation point for the amphibious assault mission.

Figure 6: Tarawa Class LHA



33

V.  AMPHIBIOUS ASSAULT MISSION

“Ever since the days of the Phoenicians, the ability to land on defended shores has
been a source of strength for those who possess it and a source of concern for those
who must oppose it.” [BARR83]

A.  OVERVIEW

Good seaports and trading routes have been the hallmarks of powerful countries for

thousands of years. Most countries have some coastline or are accessible from water routes

which make them vulnerable to an amphibious assault. The ability to conduct an assault

against defended beaches gives the aggressor a much larger range of options than would be

available otherwise. Since before World War II, the United States has made the

commitment to have those options available if needed.

The classic amphibious assault consists of “waves” of assault craft moving against a

dug-in enemy. The difficulty for the attackers is to move enough power ashore quickly to

carve out a toehold from which to pour in even more forces. The difficulty for the defenders

is that an amphibious assault can be made from anywhere along a coastline. The sheer

amount of defensible area makes it difficult to reinforce all of it. Unquestionably, the most

dangerous part for the attackers is during the ship-to-shore movement. Closely timed naval

bombardment that ceases just as the attackers hit the beach is key, as is minimizing the time

involved in moving to shore.

Advances in technology have complicated the entire process. There are a large variety

of relatively cheap missiles that can take out a ship. As a result, naval bombardment

becomes more difficult and the navy prefers to stay “over-the-horizon”. It is now easier

than ever to obtain sophisticated mines to sprinkle along the coastline. But one thing is

clear, the need for an amphibious assault capability will be around a long time. Therefore,

a need exists to be able to simulate the process.



34

B.  MISSION SELECTION

1. Types of Amphibious Operations

There are four types of amphibious operations. First is the amphibious assault which

puts a military force upon a hostile shore. Second is the amphibious demonstration which

is a fake amphibious assault to draw enemy forces into defending the shoreline. Third is the

amphibious raid in which a force goes ashore, accomplishes some mission, and then

returns. The fourth type is an amphibious withdrawal in which forces are pulled back from

a hostile shore. Any of the above missions would have satisfied the requirement for proof-

of-concept of the AAV.

2. Simplified Mission

A real amphibious assault would consist of much more than AAV’s, carrying troops

and launched from an LHA, hitting the beach. Preparations would begin at least six months

in advance. Detailed plans and practice assaults would take place. Every detail for every

contingency would be discussed and written up. All the supplies needed for three to thirty

days would loaded on the ships. Loading would be carefully planned so that ammunition,

fuel, and food would be off-loaded before any non-critical items. The assault itself must be

coordinated with naval bombardment, fixed wing support, helo support, and “vertical

envelopment” forces (i.e. troops brought in by helo’s and landing behind the enemy). Navy

SEAL and recon forces must move in prior to the assault to clear any mines or obstacles.

Once an assault is set in motion, there would be greater casualties from stopping than from

carrying on against almost any defense.

The intent of this study was not to fully simulate the complete amphibious assault. A

greatly simplified amphibious assault mission was designed and performed the following

steps:

1.) Created a unit consisting of one LHA, a section of AAV’s and a platoon of DI’s

(Dismounted Infantry) using the “unit editor”. Position it as shown in Figure 7.



35

2.) Selected the “Embark” task and the AAVs picked up the DIs and embarked onto

the LHA.

3.) The LHA was then moved to a position off the target beach using “Move”.

4.) The amphibious assault task was then selected. The AAVs disembarked, moved to

shore in a “wave”, and proceeded to occupy the designated beach. Once in position

onshore, the DIs disembarked the AAVs.

Figure 7: LHA / AAV / DI Unit



36

C.  APPROACH

The simplified mission above required the construction of five separate finite state

machines. Version 1.5.1 of ModSAF does not have the ability to embark or disembark

vehicles from ships. There is a limited ability to mount and dismount DI’s from IFV’s

(Infantry Fighting Vehicles), but this has been specifically limited to one kind of unit.

This study has also limited the embark / disembark / amphibious assault ability to one

very specific unit. To write a general solution would be better in the long run but far more

time consuming in the short run. The unit capable of this mission is an LHA/AAV/DI unit.

It consists of one LHA, four AAVs (a section), and four DI’s (which represent a platoon).

1. FINITE STATE MACHINES

The five AASFMs (Augmented Asynchronous Finite State Machines) created were all

modeled after existing libraries. The machine that handles the embarking and disembarking

at the individual vehicle level, libvembark, closely resembles libvmount. The machines that

handle the unit level embarking and disembarking, libuebkpckup and libudisembk, closely

resemble libupickup and libudsmnt, respectively. And at the top of the hierarchy, the

machines that handle mixed (i.e. multiple) units embarking and disembarking,

libumxembark and libumxdisembk, are similar to libumxmount and libumxdsmnt,

respectively.

As shown in Figure 8, each level calls on the next lower level until libvembark is

reached which actually controls the individual vehicle embarking or disembarking. In

reality, libvembark also calls upon libvmove to actually move the vehicles around. This

type of hierarchical control is typical of ModSAF. Each AAFSM that controls larger units,

spawns tasks by passing portions of that unit onto other AAFSMs until the individual

vehicle is finally acted upon. Note that the “Mixed Unit Embark” can be called from the

mission editor, but the “Mixed Unit Disembark” must be called from another task. This

design was intentional and could be changed with relative ease.



37

D.  IMPLEMENTATION LIMITATIONS

As stated previously, the amphibious assault mission is very specific to one particular

unit. The behaviors necessary to implement the mission are only available to the LHA/

AAV/DI unit. It is the only unit that can mount/dismount DIs on AAVs and embark/

disembark AAVs from an LHA. This was done to simplify the coding while still

demonstrating the proof-of-concept that military operations in littoral regions can be

simulated.

Command and

Control Level

Mixed Unit

Level

Unit

Level

Individual

Vehicles

UmxEmbark

AAFSM

Another

Task

Mission

Editor

UmxDisEmbk

AAFSM

UEbkPckup

AAFSM

UDisEmbk

AAFSM

VEmbark

AAFSM

Figure 8: Finite State Machine Hierarchy



38



39

VI.  FUTURE VEHICLE

A.  OVERVIEW

The current version of amphibious assault vehicle has been in service since 1972. Its

replacement is not scheduled for full production until 2004. One candidate for the job is

shown in Figure 9 below. The new vehicle must be able to keep up with the M1 Abrahms

tank (60 m.p.h. +) and move over the water three times faster than the current version. All

the possible replacements use some type of water-jet propulsion and movable planes to

allow the vehicle to ride like a speedboat.

The new vehicle allows changes in tactics to respond to the greatly improved weapons

available on the world market. Increased maneuverability will open up larger potential

areas of attack while keeping the expensive navy ships at a safe distance. How to make best

use of the new capabilities is a perfect opportunity for modeling and simulation.

Figure 9: Advanced AAV Prototype



40

B.  TACTICAL ADJUSTMENT

The main problem that the new vehicle must solve is simple: speed. The current AAV

cannot keep up with the M1 Abrahms tank on land and cannot be launched too far from

shore. This problem is what led to the development of the hovercraft discussed later. If the

AAAV is able to meet the specifications, tactical changes are imminent.

1. AAAV

Current AAV amphibious assault tactics call for launching the vehicles about 2500

yards from the target beach. This puts the ship doing the launching within range of many

missiles, artillery, and small attack boats. The further the ship moves out, the longer the

AAV’s must bob around the ocean, reducing the combat effectiveness of the Marines

inside. Additionally, the slow moving AAVs spend more time as easy targets for land-

based weapons.

With the creation of the AAAV, many old tactics and paradigms must be thrown out.

The time spent on the water, within range of land-based weapons, will be greatly reduced.

The ride, while still very rough, will not cause as much seasickness. The launching ships

can remain over-the-horizon and have more time to respond to longer range threats.

One particular problem is the lack of naval bombardment support available since the

ships will be staying so far out. The retirement of every battleship, without replacement,

has also compounded the problem. The new AAAV will have a stabilized weapon turret.

This will make the vehicle far more effective on land as a base-of-fire and enable it to

engage targets accurately during an amphibious assault. This is a partial solution to a very

difficult problem.

2. LCAC (Hovercraft)

One of the driving forces in the development of the LCAC (Landing Craft, Air

Cushion) or hovercraft was the speed at which it could move over the water and over land.

The LCAC can go over 60 knots on the water and, theoretically, the same over land. This

allows the vehicle to be launched from long distances and still achieve surprise at the



41

appropriate land fall. Unfortunately, the vehicle cannot support the weight of armor and

does not have any armament. It is actually relatively fragile and certainly not ideal for

assaulting a defended beach. Even with these disadvantages, this impressive machine can

be extremely useful for a variety of missions.

One possibility is the rapid movement ashore of heavy weaponry. Once the initial

toehold on a beach is established, the LCAC could carry in larger artillery pieces and more

ammunition. This would give the initial forces a much stronger position. The rapid

replacement of supplies is essential to an assault. Initial forces must go in lightly weighted

to allow maximum maneuverability. With its speed, the LCAC would be able to bring in

timely supplies. There have also been experiments with the LCAC carrying troops inside

containers and carrying the current AAV.

C.  SIMULATION REQUIREMENTS

To add the new Advanced AAV to future versions of ModSAF should be

straightforward. Once the new vehicle is identified as a new model of the current AAV,

simple changes to the copied parameter file will give it all the capabilities of the old AAV

with new characteristics. This is a simplification, but adding a new version of an existing

vehicle is not difficult.

To add the LCAC would be more difficult but not dramatically so. The current LCAC

is more comparable to a very fast supply ship with limited amphibious capability. The

LCAC does not perform particularly well on land due to the amount of dust and objects

kicked up by its powerful fans. It is sufficient to move over smooth surfaces, but not suited

to moving over rough terrain.



42



43

VII.  SUMMARY AND CONCLUSIONS

A.  SUMMARY

The intent of this study was to demonstrate that an entity could be created in ModSAF

that is capable of moving cross paradigms, and therefore capable of simulating amphibious

assault operations. The entity created, the Assault Amphibious Vehicle, must be able to

operate in water and on land in the same manner the real AAV does. This provided the

crucial link in demonstrating an amphibious assault. Now land entities (Dismounted

Infantryman) and sea entities (Amphibious Warfare ships) can utilize the AAV entity to

conduct assaults from the sea.

B.  RESULTS OF WORK

1. Assault Amphibious Vehicle

The addition of a new vehicle type, capable of crossing from land to water and back,

turned out to be easier than expected. This was mainly due to the extensible design of

ModSAF. Most of the existing work in ModSAF has concentrated on land vehicles. As a

result of the extensible design, the new vehicle was able to subsume the behaviors of the

already existing land vehicles. The modification to allow the vehicle to move across deep

water turned out to be a small change in the parameter file. The program does not take into

account the relative roughness of the water like it accounts for the roughness of the terrain.

The vehicle simply moves much slower in water than on land. Additionally, or as a side

effect, there is no accounting for behavior in the surf zone. The transition point from sea to

beach is typically the most dangerous as waves can actually lift up and swamp the 25-ton

craft. Otherwise, the physically based behavior of the vehicle is accurate.



44

2. Amphibious Assault Mission

The amphibious assault mission was intended as a demonstration of the capabilities of

the new AAV. Unfortunately, version 1.5.1 of ModSAF did not have the necessary

behaviors to conduct a limited assault from a ship. The ability to mount DIs into an AAV

and the ability to embark the AAV on a ship needed to be added. Disembarking and

dismounting also needed to be added. Additionally, there were no ships available even

though the protocol had definitions for them. Other behaviors, such as assaulting a position

and occupying it, were already present.

The resulting mission is very specific and only works for one particular unit. An LHA/

AAV/DI unit can embark, move to position, disembark, and assault a beach. The behaviors

have very few options and are very specific.

C.  CONCLUSIONS

Amphibious military operations in littoral regions can be simulated by extending the

current programs used to generate SAF. The extension will not require any major shifts in

architecture or design paradigms. In particular, the ModSAF program was able to handle

the changes with relative ease.

D.  RECOMMENDATIONS FOR FUTURE WORK

As work continues on extending ModSAF to handle Navy and Marine Corps specific

needs, many behaviors currently unavailable must be added. The most obvious behavior

needed is a generalized ability for DIs to mount and dismount from any vehicle. Along a

similar line, the ability for vehicles to hold other vehicles must be added. Current behaviors

are very limited and specific to certain units.

The need to simulate the Advanced AAV will be necessary soon for the development

of tactics and methods of employment. Simulation would help try new sizes of units and

various restructuring of organizations. By the time the real one is available, the Marines

should be ready to deploy it from the factory.



45

APPENDIX A: AAV VEHICLE

In the SADOD document [MODS95], the seven steps necessary to create a new

vehicle are listed and described in detail. The changes made to each file to create the AAV

are described below.

A.  PROTOCOL CONSTANTS

All the following files reside in ‘common/include/protocol/’. Anytime changes are

made to these files, a ‘gmake’ must be done in the directory ‘common/libsrc/librdrconst’ to

install the new protocol definitions.

‘veh_type.h’:

/* Amphibious Assault Vehicles */
#define SP_vehicle_US_AAVP7                \
        ( SP_objectDomainVehicle | SP_vehicleEnvironmentAmphibious \
         | SP_vehicleClassAmphibious | SP_vehicleCountryUS \
         | 0 << SP_vehicleSeriesShift | 0 << SP_vehicleModelShift \
         | SP_vehicleFunctionAmphibiousAPC )

‘p_safmodels.h’

#define SP_SM_AmphibiousHull   ( SP_SM_classHull | 8 << SP_SM_instanceShift )

‘obj_type.h’

#define SP_vehicleEnvironmentAmphibious      ( 5 << SP_vehicleEnvironmentShift )
#define SP_vehicleClassAmphibious                  ( 6 << SP_vehicleClassShift )
#define SP_vehicleFunctionAmphibiousAPC      18 /* AAV */
#define SP_echelonEnvironmentAmphibious     ( 5 << SP_echelonEnvironmentShift )
#define SP_echelonClassAmphibious               ( 6 << SP_echelonClassShift )
#define SP_echelonFunctionAmphibiousAPC      19 /* AAV formations */

In addition to the above changes, similar definitions were made to create units of

AAV’s.



46

B.  PARAMETER FILE

In the individual vehicle parameter file, any parameters that needed to be different than

those contained in the ‘standard_params.rdr’ or ‘macros.rdr’ were over-ridden at this point.

The comments at the beginning of the file provide a good explaination of the ‘inheritance’

method used to define vehicle behaviors and abilities. These files are in the directory

‘common/src/ModSAF/entities/’:

‘US_AAVP7_params.rdr’:

;; $Revision: 1.0 $
;;
;; This file defines all the model parameters for a vehicle_US_AAVP7

;; Note:  There are currently three levels of specificity in the vehicle
;;        .rdr files.  They are, from the general to the specific:
;;
;;        - standard_params.rdr
;;        - macros.rdr
;;        - the individual vehicle .rdr files
;;
;;        When adding a parameter, you must determine in which of the above
;;        three files it belongs.  Generally, this set of rules may be
;;        followed:
;;
;;        - If the parameter has the same value(s) for all vehicles of a
;;          category (the categories being ground vehicles, fixed wing
;;          aircraft, rotary wing aircraft, and missiles), then it belongs
;;          in standard_params.rdr
;;
;;        - If the parameter has the same value(s) for many vehicles, but
;;          not all vehicles of a category, then make a macro out of it,
;;          put the macro in macros.rdr, and refer to the macro in the
;;          appropriate vehicle .rdr files
;;
;;        - If the parameter is different for most vehicles, then it is
;;          best to specify it in each vehicle .rdr file
;;
;;        When looking for a parameter, start at the individual vehicle .rdr
;;        file.  If it’s not there, look in macros.rdr.  If it’s not there,
;;        look in standard_params.rdr.

US_AAVP7_MODEL_PARAMETERS {

(SM_Entity DEFAULT_DEAD_RECKONING_PARAMETERS
   (vehicle_class vehicleClassAmphibious)
   (guises vehicle_US_AAVP7 vehicle_USSR_BMP)



47

   (send_dis_deactivate true)
   )

;; Remove ;;’s to turn reaction to stingray fire on
(SM_DFDamage (filename “dfdam_IFV.rdr”)

         (damage_threshold 10.0)
;;             (stingray
;;               (damage_table_laser1 “dfdam_sr_invincible.rdr”)
;;               (damage_table_laser2 “dfdam_sr_invincible.rdr”)
;;               (damage_duration 15.0 25.0)
;;               (sight_occupancy 0.8)
;;            )
)

(SM_IFDamage (name apc1))

;; Remove ;;’s to turn reaction to stingray fire on
;;(SM_SRDetect (filename “srdet_table_vulnerable.rdr”))
;;VSRREACT

(SM_Components (hull SM_TrackedHull SAFCapabilityMobility)
       (primary-turret [SM_GenericTurret | 0])
       (commander-sight [SM_Visual | 0])
       (driver-sight [SM_Visual | 1])
       (gunner-sight [SM_Visual | 2])
       (main-gun [SM_BallisticGun | 0] SAFCapabilityFirepower)
       (machine-gun [SM_BallisticGun | 1] SAFCapabilityFirepower)
       )

(SM_TrackedHull (soils (SOIL_DEFAULT        (max_speeds 65.18 65.18) ;40.5 MPH
                        (max_decel 4.98) ; 14 fss
                        (max_climb 60.0)

                                            SOIL_DEFAULT_TRACKED)
               (SOIL_ROAD           (max_speeds 65.18 65.18)

                        (max_decel 4.98)
                        (max_climb 60.0)

                                            SOIL_ROAD_TRACKED)
               (SOIL_RCI250         (max_speeds 65.18 65.18)

                        (max_decel 4.98)
                        (max_climb 60.0)

                                            SOIL_RCI250_TRACKED)
               (SOIL_RCI050         (max_speeds 43.45 43.45) ; 27 MPH

                        (max_decel 4.98)
                        (max_climb 60.0)

                                            SOIL_RCI050_TRACKED)
               (SOIL_SHALLOW_WATER  (max_speeds 21.73 21.73 ) ;13.5

MPH
                        (max_decel 8.0)
                        (max_climb 60.0)

                                           SOIL_SHALLOW_WATER_TRACKED)
               (SOIL_DEEP_WATER     (max_speeds 13.0 13.0) ; 8 MPH



48

                        (max_accel 0.44)
                        (max_decel 10.0)
                        (max_climb 60.0)

                                            SOIL_DEEP_WATER_TRACKED)
       )

(fuel_usage (0.0   100.0)
    (0.125  12.5))

)

;; Primary turret
([SM_GenericTurret | 0] (physdb_name “primary-turret”)

        (rates continuous 0.0 40.0))

;; Main gun - MK19 Mod 3 40 mm machine gun
([SM_BallisticGun | 0]  (physdb_name “main-gun”)

(sensor_name “gunner-sight”)
(hit_obscuring_vehicles true)
(rates 0.0 40.0)
(magazine_size 96)
(loading_block 96)
LOAD_TIME_MACHINE_GUN
(munitions (munition_US_M430

    (round_velocity 242.0)
    (rate 375)
    (mass 0.4)
    (min_range 18.0)
    (max_range 2212.0)

                    HIT_TABLE_SIMPLE_NO_LASER_KE
                    TRACKTIME_TABLE_MACHINE_GUN)

   )
)

;; Machine  gun - Browning .50 (12.7mm) HB, M2
([SM_BallisticGun | 1]  (physdb_name “machine-gun”)

(sensor_name “gunner-sight”)
(hit_obscuring_vehicles true)
(rates 0.0 40.0)
(magazine_size 200)
(loading_block 200)
LOAD_TIME_MACHINE_GUN
(munitions (munition_US_M33 ;; .50 cal. ball

    (round_velocity 934.0)
    (rate 550)
    (mass 0.12)
    (min_range 0.0)
    (max_range 6700.0) ;

                    HIT_TABLE_SIMPLE_NO_LASER_HE
                    TRACKTIME_TABLE_MACHINE_GUN)

  )
)



49

;; Commander’s sight
([SM_Visual | 0] VISUAL_APC_COMMANDER_DVO )

;; Driver’s sight
([SM_Visual | 1]VISUAL_APC_DRIVER_DVO )

;; Gunner’s sight
([SM_Visual | 2]VISUAL_APC_GUNNER_DVO )

(SM_Supplies (munition_Fuel 649.8);; 171 gallons, in liters.
     (munition_US_M430 864.0);; 40mm HEDP
     (munition_US_M33 1200.0) ;; .50 cal. ball
     )

(SM_VSpotter (background on)
     (sensors commander-sight driver-sight gunner-sight)

             VSPOTTER_SPECS
     )

 (SM_VTargeter
  (background on)
  (munition_control_types
   (munition_US_M430
    (type ballistic)
    (tracking_data (name                 main-gun)

   (is_gun               true)))
   (munition_US_M33
    (type ballistic)
    (tracking_data (name                 machine-gun)

   (is_gun               true)))
   )
  (default_weapon “main-gun” munition_US_M430)
  VTARGETER_GROUND_TRACKED
  )
(SM_VAssess (background on)

    (sensors commander-sight
     driver-sight
     gunner-sight)

    (weapons ([objectDomainMask       |
       vehicleEnvironmentMask |
       vehicleClassMask       |
       vehicleFunctionMask    ]
      [objectDomainVehicle          |
       vehicleEnvironmentGround     |
       vehicleClassSPArmoredTracked |
       vehicleFunctionMainBattleTank]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     ([objectDomainMask       |
       vehicleEnvironmentMask ]



50

      [objectDomainVehicle         |
       vehicleEnvironmentGround]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     ([objectDomainMask       |
       vehicleEnvironmentMask |
       vehicleClassMask       ]
      [objectDomainVehicle    |
       vehicleEnvironmentAir  |
       vehicleClassRotaryWing ]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     (objectDomainMask
      objectDomainLifeForm
      (0.0 2000.0 “machine-gun” munition_US_M33)

                      )
     )

            (max_hits_on_target 20)
            (gunner_visual “gunner-sight”)
            VASSESS_GROUND

    VASSESS_IFV_THREATS
    VASSESS_IFV_OPTIONAL

            (no_target_load
                (“main-gun” munition_US_M430)
                (“machine-gun” munition_US_M33)
               )

    )

(SM_VTerrain
 (entity_period 1000)
 (avoidance_mask [

  VTERRAIN_BUILDING |
;   VTERRAIN_WATER |
;   VTERRAIN_TREELINE |
;   VTERRAIN_TREE |

  VTERRAIN_CANOPY |
  VTERRAIN_ENTITY |

                  VTERRAIN_STEEP_AREA |
  VTERRAIN_BREACH_LANE
  ])

 (avoid_soils SOIL_NO_GO)
 (background on)
 (movement_threshold 500.0)
 (map_radius 1000.0)
 (entity_radius 500.0)
 (history_list_spacing 20.0)
 (num_history_list_points 50)
 (breach_obst_nominal_size 400.0))

}



51

C.  LOAD PARAMETER FILE

The newly created parameter file was added to ‘modellist.rdr’ which is located in

‘common/src/ModSAF/entities/’:

 “US_AAVP7_params.rdr”

D.  REFERENCE PARAMETER MACRO

The individual vehicles use other macro definitions to handle any parameter values not

specified in the vehicle parameter file. These macros are associated with the vehicle in the

file ‘models.rdr’. This file is also located in ‘common/src/ModSAF/entities/’:

(“vehicle_US_AAVP7” US_AAVP7_MODEL_PARAMETERS
GROUND_STD_PARAMS)

E.  ADD TO GUI

The graphical user interface has the available vehicles input during start-up. By adding

the vehicle to ‘libsrc/libunits/units.rdr’ and doing a gmake, the vehicle will appear on the

list of available entities:

(“AAVP7”      vehicle_US_AAVP7)

F.  ADD ICONS

There are several display options for vehicles and units. They can be shown as PVD

(Plan View Display) pictures, military individual icons, military platoon icons, or military

company icons. Each level has a defaulting behavior that will bring up an icon based on the

vehicle role. To define a unique PVD, it was necessary to edit the file ‘pvd.rdr’ in the

directory ‘common/libsrc/libpvd’ and run ‘gmake’:

PVD_AAV_HULL{ PVD_HULL
  (block-0.5 0.25

                                        -0.25 0.5
                                         0.25 0.5
                                         0.5 0.25
                                         0.5 -0.5
                                        -0.5 -0.5)

}
PVD_AAV_HTURRET{ PVD_TURRET

  (disc0.0 0.0 0.5 x)
  (line0.25 -0.25 -0.3 -0.25 1.0)



52

  (line0.25 0.25 -0.3 0.25 1.5)
}

PVD_AAV_FTURRET{ PVD_TURRET
  (disc0.0 0.0 0.5 x)
  (line0.25 -0.25 -0.3 -0.5 0.5 -0.25 1.0)
  (line0.25 0.25 -0.3 0.0 0.5 0.25 1.5)
}

PVD_AAV_PICTURES{ (;; Healthy
   ((PVD_TEAMPVD_BLACKPVD_AAV_HULL)
    (PVD_WHITEPVD_NONEPVD_AAV_HTURRET))
   ;; MKill
   ((PVD_TEAMPVD_BLACKPVD_MKILL_HULL)
    (PVD_WHITEPVD_NONEPVD_AAV_HTURRET))
   ;; FKill
   ((PVD_TEAMPVD_BLACKPVD_AAV_HULL)
    (PVD_WHITEPVD_NONEPVD_AAV_FTURRET))
   ;; MFKill
   ((PVD_TEAMPVD_BLACKPVD_MKILL_HULL)
    (PVD_WHITEPVD_NONEPVD_AAV_FTURRET))
   ;; KKill
   ((PVD_BLACKPVD_TEAMPVD_MKILL_HULL)
    (PVD_BLACKPVD_TEAMPVD_AAV_FTURRET)))
}

 ;; Representative amphibious armored personnel carriers
 (vehicle_US_AAVP7 PVD_AAV_PICTURES)

To specify a correct military icon for the AAV, it was necessary to edit the file

‘bgrdb.rdr’ in the directory ‘common/libsrc/libbgrdb/’ and run ‘gmake’:

PVD_US_AAV_ICON { (PVD_ROTATE
  (PVD_DEFAULT
   (“elt Diamond /Hold”

                    “elt RAmphibious”
    “elt UCompany”)))
 }

;; Specific amphibious assault vehicles
   (vehicle_US_AAVP7  PVD_US_AAV_ICON)

G.  PHYSICAL DATABASE

The physical database is where the actual physical characteristics of the vehicle are

input. The file ‘physdb.rdr’ is contained in the directory ‘common/libsrc/libphysdb/’ and a

‘gmake’ is required for changes to take effect:



53

 (vehicle_US_AAVP7
  (3.33 8.2 3.33 0.0 0.0 25792.0
   1830.0 ; max effective range of .50 cal. - range of Mk 19 is 1500 m
   OPTICAL_CONTRAST_MACRO
   IMAGEI_CONTRAST_MACRO
   THERMAL_CONTRAST_MACRO
    ((primary-turret 0 true 1.06 1.06 2.5 1.80 2.30 0.80 360.0 360.0
       ((main-gun 1 true -0.25 0.5 0.4 0.0 1.1 0.0 0.0 45.0 -8.0 0)
        (machine-gun 2 true 0.25 0.5 0.4 0.0 1.66 0.0 0.0 45.0 -8.0 0))))))



54



55

APPENDIX B: LHA VEHICLE

In the SADOD document [MODS95], the seven steps necessary to create a new

vehicle are listed and described in detail. The changes made to each file to create the LHA

are described below.

A.  PROTOCOL CONSTANTS

All the following files reside in ‘common/include/protocol/’. Anytime changes are

made to these files, a ‘gmake’ must be done in the directory ‘common/libsrc/librdrconst’ to

install the new protocol definitions. Many protocol definitions were already in place for an

LHA vehicle even though such a vehicle was not available for use.

‘veh_type.h’:

     /* LHA 1 - USS Tawara assault  */
#define SP_vehicle_US_LHA1              \
        ( SP_objectDomainVehicle | SP_vehicleEnvironmentWater \
         | SP_vehicleClassAmphibWarfare | SP_vehicleCountryUS \
         | SP_USSTawaraClass | 1 << SP_vehicleModelShift \
         | SP_vehicleFunctionAmphibAssault )/* Amphibious Assault Vehicles */

‘obj_type.h’

#define SP_vehicleEnvironmentWater       ( 4 << SP_vehicleEnvironmentShift )
#define SP_vehicleClassAmphibWarfare           ( 1 << SP_vehicleClassShift )
#define SP_vehicleFunctionAmphibAssault          2
#define SP_echelonFunctionAmphibAssault         2
#define SP_echelonEnvironmentWater           ( 4 << SP_echelonEnvironmentShift )

B.  PARAMETER FILE

In the individual vehicle parameter file, any parameters that needed to be different than

those contained in the ‘standard_params.rdr’ or ‘macros.rdr’ were over-ridden at this point.

The comments at the beginning of the file provide a good explaination of the ‘inheritance’

method used to define vehicle behaviors and abilities. The definition of the LHA is very

similar to the definition of the AAV because it was sufficient for this study. Many changes



56

would be necessary to truly simulate an LHA. These files are in the directory ‘common/src/

ModSAF/entities/’:

‘US_LHA1_params.rdr’:

;; $Revision: 1.0 $
;;
;; This file defines all the model parameters for a vehicle_US_LHA1, a
;; Tarawa class amphibious assault ship.

;; Note:  There are currently three levels of specificity in the vehicle
;;        .rdr files.  They are, from the general to the specific:
;;
;;        - standard_params.rdr
;;        - macros.rdr
;;        - the individual vehicle .rdr files
;;
;;        When adding a parameter, you must determine in which of the above
;;        three files it belongs.  Generally, this set of rules may be
;;        followed:
;;
;;        - If the parameter has the same value(s) for all vehicles of a
;;          category (the categories being ground vehicles, fixed wing
;;          aircraft, rotary wing aircraft, and missiles), then it belongs
;;          in standard_params.rdr
;;
;;        - If the parameter has the same value(s) for many vehicles, but
;;          not all vehicles of a category, then make a macro out of it,
;;          put the macro in macros.rdr, and refer to the macro in the
;;          appropriate vehicle .rdr files
;;
;;        - If the parameter is different for most vehicles, then it is
;;          best to specify it in each vehicle .rdr file
;;
;;        When looking for a parameter, start at the individual vehicle .rdr
;;        file.  If it’s not there, look in macros.rdr.  If it’s not there,
;;        look in standard_params.rdr.

US_LHA1_MODEL_PARAMETERS {

(SM_Entity DEFAULT_DEAD_RECKONING_PARAMETERS
   (vehicle_class vehicleClassAmphibWarfare)
   (guises vehicle_US_LHA1 vehicle_USSR_BMP) ;; currently no guises
   (send_dis_deactivate true)
   )

(SM_Components (hull SM_TrackedHull SAFCapabilityMobility)
       (primary-turret [SM_GenericTurret | 0])
       (commander-sight [SM_Visual | 0])



57

       (driver-sight [SM_Visual | 1])
       (gunner-sight [SM_Visual | 2])
       (main-gun [SM_BallisticGun | 0] SAFCapabilityFirepower)
       (machine-gun [SM_BallisticGun | 1] SAFCapabilityFirepower)
       )

(SM_TrackedHull (soils (SOIL_DEFAULT        (max_speeds 38.0 38.0) ;24 MPH
                        (max_decel 0.3)
                        (max_climb 0.0)

                                            SOIL_DEFAULT_TRACKED)
               (SOIL_ROAD           (max_speeds 0.0 0.0)

                        (max_decel 0.0)
                        (max_climb 0.0)

                                            SOIL_ROAD_TRACKED)
               (SOIL_RCI250         (max_speeds 0.0 0.0)

                        (max_decel 0.0)
                        (max_climb 0.0)

                                            SOIL_RCI250_TRACKED)
               (SOIL_RCI050         (max_speeds 0.0 0.0)

                        (max_decel 0.0)
                        (max_climb 0.0)

                                            SOIL_RCI050_TRACKED)
               (SOIL_SHALLOW_WATER  (max_speeds 0.0 0.0)

                        (max_decel 0.0)
                        (max_climb 0.0)

                                           SOIL_SHALLOW_WATER_TRACKED)
               (SOIL_DEEP_WATER     (max_speeds 38.0 38.0) ; 24 MPH

                        (max_accel 1.0)
                        (max_decel 1.0)
                        (max_climb 0.0)

                                            SOIL_DEEP_WATER_TRACKED)
       )

(fuel_usage (0.0   100.0)
    (0.125  12.5))

)

;; Primary turret
([SM_GenericTurret | 0] (physdb_name “primary-turret”)

        (rates continuous 0.0 40.0))

;; Main gun - MK19 Mod 3 40 mm machine gun
([SM_BallisticGun | 0]  (physdb_name “main-gun”)

(sensor_name “gunner-sight”)
(hit_obscuring_vehicles true)
(rates 0.0 40.0)
(magazine_size 96)
(loading_block 96)
LOAD_TIME_MACHINE_GUN



58

(munitions (munition_US_M430
    (round_velocity 242.0)
    (rate 375)
    (mass 0.4)
    (min_range 18.0)
    (max_range 2212.0)

                    HIT_TABLE_SIMPLE_NO_LASER_KE
                    TRACKTIME_TABLE_MACHINE_GUN)

   )
)

;; Machine  gun - Browning .50 (12.7mm) HB, M2
([SM_BallisticGun | 1]  (physdb_name “machine-gun”)

(sensor_name “gunner-sight”)
(hit_obscuring_vehicles true)
(rates 0.0 40.0)
(magazine_size 200)
(loading_block 200)
LOAD_TIME_MACHINE_GUN
(munitions (munition_US_M33 ;; .50 cal. ball

    (round_velocity 934.0)
    (rate 550)
    (mass 0.12)
    (min_range 0.0)
    (max_range 6700.0) ;

                    HIT_TABLE_SIMPLE_NO_LASER_HE
                    TRACKTIME_TABLE_MACHINE_GUN)

  )
)

;; Commander’s sight
([SM_Visual | 0] VISUAL_APC_COMMANDER_DVO )

;; Driver’s sight
([SM_Visual | 1]VISUAL_APC_DRIVER_DVO )

;; Gunner’s sight
([SM_Visual | 2]VISUAL_APC_GUNNER_DVO )

(SM_Supplies (munition_Fuel 649.8);; 171 gallons, in liters.
     (munition_US_M430 864.0);; 40mm HEDP
     (munition_US_M33 1200.0) ;; .50 cal. ball
     )

(SM_VSpotter (background on)
     (sensors commander-sight driver-sight gunner-sight)

             VSPOTTER_SPECS
     )

 (SM_VTargeter
  (background on)



59

  (munition_control_types
   (munition_US_M430
    (type ballistic)
    (tracking_data (name                 main-gun)

   (is_gun               true)))
   (munition_US_M33
    (type ballistic)
    (tracking_data (name                 machine-gun)

   (is_gun               true)))
   )
  (default_weapon “main-gun” munition_US_M430)
  VTARGETER_GROUND_TRACKED
  )

(SM_VAssess (background on)
    (sensors commander-sight

     driver-sight
     gunner-sight)

    (weapons ([objectDomainMask       |
       vehicleEnvironmentMask |
       vehicleClassMask       |
       vehicleFunctionMask    ]
      [objectDomainVehicle          |
       vehicleEnvironmentGround     |
       vehicleClassSPArmoredTracked |
       vehicleFunctionMainBattleTank]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     ([objectDomainMask       |
       vehicleEnvironmentMask ]
      [objectDomainVehicle         |
       vehicleEnvironmentGround]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     ([objectDomainMask       |
       vehicleEnvironmentMask |
       vehicleClassMask       ]
      [objectDomainVehicle    |
       vehicleEnvironmentAir  |
       vehicleClassRotaryWing ]
      (0.0 3500.0 “main-gun” munition_US_M430)
      )
     (objectDomainMask
      objectDomainLifeForm
      (0.0 2000.0 “machine-gun” munition_US_M33)

                      )
     )

            (max_hits_on_target 20)
            (gunner_visual “gunner-sight”)
            VASSESS_GROUND

    VASSESS_IFV_THREATS



60

    VASSESS_IFV_OPTIONAL
            (no_target_load
                (“main-gun” munition_US_M430)
                (“machine-gun” munition_US_M33)
               )

    )

(SM_VSearch
 (search_type ground)
 (background on)
 (turret_scanner “primary-turret” 3.0 0.2)
 (gun_scanner    “main-gun”)
 (gunner_visual  “gunner-sight”)
 (visual_scanners “commander-sight” “driver-sight”)
 (stopped_duty_cycle1.01.0)
 (moving_duty_cycle1.00.0)
 (restrict2for“inside”“none”)
)

(SM_VTerrain
 (entity_period 1000)
 (avoidance_mask [

  VTERRAIN_BUILDING |
;   VTERRAIN_WATER |

  VTERRAIN_TREELINE |
  VTERRAIN_TREE |
  VTERRAIN_CANOPY |
  VTERRAIN_ENTITY |

                  VTERRAIN_STEEP_AREA |
  VTERRAIN_BREACH_LANE
  ])

 (avoid_soils SOIL_NO_GO SOIL_SHALLOW_WATER SOIL_RCI050
SOIL_RCI250 SOIL_ROAD SOIL_DEFAULT  )
 (background on)
 (movement_threshold 500.0)
 (map_radius 1000.0)
 (entity_radius 500.0)
 (history_list_spacing 20.0)
 (num_history_list_points 50)
 (breach_obst_nominal_size 400.0))
}

C.  LOAD PARAMETER FILE

The newly created parameter file was added to ‘modellist.rdr’ which is located in

‘common/src/ModSAF/entities/’:

  “US_LHA1_params.rdr”



61

D.  REFERENCE PARAMETER MACRO

The individual vehicles use other macro definitions to handle any parameter values not

specified in the vehicle parameter file. These macros are associated with the vehicle in the

file ‘models.rdr’. This file is also located in ‘common/src/ModSAF/entities/’:

 (“vehicle_US_LHA1”         US_LHA1_MODEL_PARAMETERS
GROUND_STD_PARAMS)

E.  ADD TO GUI

The graphical user interface has the available vehicles input during start-up. By adding

the vehicle to ‘libsrc/libunits/units.rdr’ and doing a gmake, the vehicle will appear on the

list of available entities:

(“LHA1”       vehicle_US_LHA1)

F.  ADD ICONS

There are several display options for vehicles and units. They can be shown as PVD

(Plan View Display) pictures, military individual icons, military platoon icons, or military

company icons. Each level has a defaulting behavior that will bring up an icon based on the

vehicle role. To define a unique PVD, it was necessary to edit the file ‘pvd.rdr’ in the

directory ‘common/libsrc/libpvd’ and run ‘gmake’:

PVD_SHIP_H_LHA{ ((PVD_TEAM   PVD_BLACK       PVD_HULL
    (block        0.0   1.0   0.25  0.50

  0.25 -1.0  -0.25 -1.0
 -0.25  0.50 ))

   (PVD_WHITE  PVD_BLACK     PVD_HULL
    (block       0.0   0.5  0.17  0.5

                                         0.17 -0.5  0.0  -0.5)))
}

PVD_SHIP_K_LHA{ ((PVD_TEAM   PVD_BLACK       PVD_HULL
    (block        0.0   1.0   0.25  0.50

                                          0.5   0.0
  0.25 -1.0  -0.25 -1.0

                                          0.0   0.0
 -0.25  0.50 ))

   (PVD_WHITE  PVD_BLACK     PVD_HULL
    (block       0.0   0.5  0.17  0.5

                                         0.25  0.0



62

                                         0.17 -0.5  0.0  -0.5
                                         0.08  0.0)))

}
 ;; Specific Ship vehicles
 (vehicle_US_LHA1 (PVD_SHIP_H_LHA PVD_SHIP_K_LHA PVD_SHIP_K_LHA
                   PVD_SHIP_K_LHA PVD_SHIP_K_LHA))

To specify a correct military icon for the LHA, it was necessary to edit the file

‘bgrdb.rdr’ in the directory ‘common/libsrc/libbgrdb/’ and run ‘gmake’:

PVD_US_SHIP_ICON { (PVD_ROTATE
   (PVD_DEFAULT
   (“elt RoundPoint /Hold”

                    “elt RAmphibious”)))
 }

   ;; Specific ship vehicles
   (vehicle_US_LHA1  PVD_US_SHIP_ICON)

G.  PHYSICAL DATABASE

The physical database is where the actual physical characteristics of the vehicle are

input. The file ‘physdb.rdr’ is contained in the directory ‘common/libsrc/libphysdb/’ and a

‘gmake’ is required for changes to take effect:

  (vehicle_US_LHA1
  (16.0 125.0 15.0 0.0 -6.0 36287390.0 ; should be 32.0 245.0 30.0 0.0 -12.0
   1830.0 ;
   OPTICAL_CONTRAST_MACRO
   IMAGEI_CONTRAST_MACRO
   THERMAL_CONTRAST_MACRO
    ((primary-turret 0 true 1.06 1.06 2.5 1.80 2.30 0.80 360.0 360.0
       ((main-gun 1 true -0.25 0.5 0.4 0.0 1.1 0.0 0.0 45.0 -8.0 0)
        (machine-gun 2 true 0.25 0.5 0.4 0.0 1.66 0.0 0.0 45.0 -8.0 0))))))



63

LIST OF REFERENCES

[AASB94] Assault Amphibian School Battalion Student Handout,AAV History,
Mission, Equipment, and Organization, Camp Pendleton California, July
1994.

[BARR83] Barrow, Robert H.,forward inAssault From The Sea: Essays on the History
of Amphibious Warfare, ed. M.L. Bartlett, Annapolis: Naval Institute Press,
1983.

[BAUE69] Bauer, K. Jack,Surfboats and Horse Marines: U.S. Naval Operations in
the Mexican War, 1846-48, Annapolis: United States Naval Institute, 1969.

[BOOK93] Booker, Brooks, Garrett, Giddings, Salisbury, Worley,1993 DMSO Survey
of Semi-Automated Forces, July 30, 1993, Defense Modeling and
Simulation Office (DMSO), University of Central Florida, Orlando,
Florida.

[CALD93] Calder, Smith, Courtemanche, Mar, Ceranowicz,ModSAF Behavior
Simulation and Control, Third Conference on Computer Generated Forces
and Behavioral Representation, March 17-19, 1993, University of Central
Florida, Orlando, Florida.

[CERA93a] Ceranowicz, Andrew Z., Modular Semi-Automated Forces, Modular Semi-
Automated Forces: Recent and Historical Publications, May 13, 1994,
Loral Advanced Distributed Simulation, Cambridge, Massachusetts.

[CERA93b] Ceranowicz, Andrew Z.,ModSAF and Command and Control, Modular
Semi-Automated Forces: Recent and Historical Publications, May 13,
1994, Loral Advanced Distributed Simulation, Cambridge, Massachusetts.

[CERA93c] Ceranowicz, Andrew Z.,ModSAF Capabilities, Fourth Conference on
Computer Generated Forces and Behavioral Representation, May 4-6,
1994, University of Central Florida, Orlando, Florida.

[CERA94] Ceranowicz, Coffin, Smith, Gonzalez, Ladd,Operator Control of Behavior
in ModSAF, Fourth Conference on Computer Generated Forces and
Behavioral Representation, May 4-6, 1994, University of Central Florida,
Orlando, Florida.



64

[COUR95] Courtemanche, Ceranowicz,ModSAF Development Status, Fifth
Conference on Computer Generated Forces and Behavioral
Representation, May 9-11, 1994, University of Central Florida, Orlando,
Florida.

[CULP92] Culpepper, Michael E.,Tactical Decision Making in Intelligent Agents:
Developing Autonomous Forces in NPSNET, Masters Thesis, March 1992,
Naval Postgraduate School, Monterey, California.

[FMFM95] Fleet Marine Force Manual 1-0, United States Marine Corps, 1995

[HEAR92] Hearne, John Henry, Jr., NPSNET: Physically Based, Autonomous, Naval
Surface Agents, Masters Thesis, September 1993, Naval Postgraduate
School, Monterey, California.

[MARD83] Marder, Arthur J.,Mongol Attempts to Invade Japan, 1274, 1281., in
Assault From The Sea: Essays on the History of Amphibious Warfare, ed.
M.L. Bartlett, Annapolis: Naval Institute Press, 1983.

[MCAN94] McAndrews, Gary M.,Autonomous Agent Interactions in a Real-Time
Simulation System, Masters Thesis, September 1994, Naval Postgraduate
School, Monterey, California.

[MCMS94] Marine Corps Modeling and Simulation Management Office mission
statement, 1994.

[MODS95] ModSAF Software Architecture Design and Overview Document, Loral
Advanced Distributed Simulation, Inc., April 14, 1995, Cambridge,
Massachusetts.

[MODS94] ModSAF User Manual, Version 1.0, Loral Advanced Distributed
Simulation, Inc., March 2, 1994, Cambridge, Massachusetts.

[MOHN94] Mohn, Howard L., Implementation of a Tactical Mission Planner for
Command and Control of Computer Generated Forces in ModSAF,
Masters Thesis, September 1994, Naval Postgraduate School, Monterey,
California.

[POPE91] Pope, Arthur R.,The SIMNET Network and Protocols, LADS Document
No. 9120, June, 1991, LORAL Advanced Distributed Simulation,
Cambridge, Massachusetts.

[ROBA94a] Robasky, Kim,ModSAF 1.0 Developer's Course Handouts, LADS
Document No. 94017 v. 1.01, May 9, 1994, LORAL Advanced Distributed
Simulation, Cambridge, Massachusetts.



65

[ROBA94b] Robasky, Kim, ModSAF 1.0 Developer's Class Work Book, LADS
Document No. 94006 v. 1.01, June 24, 1994, LORAL Advanced
Distributed Simulation, Cambridge, Massachusetts.

[RODG37] Rodgers, William L.,Greek and Roman Naval Warfare: A Study of
Strategy, Tactics, and Ship Design from Salamis (480 B.C.) to Actium (31
B.C., Annapolis: Unites States Naval Institute, 1937.

[RYAN83] Ryan, Brendan P.,Aboukir Bay, 1801, in Assault From The Sea: Essays on
the History of Amphibious Warfare, ed. M.L. Bartlett, Annapolis: Naval
Institute Press, 1983.

[STAN93a] Standard for Information Technology - Protocols for Distributed
Interactive Simulation Applications, Version 2.0, Third Draft, 28 May
1983, STRICOM, DMSO, Orlando, Florida.

[STAN93b] Stanzione, Smith, Brock, Mar, Calder,Terrain Reasoning in the ODIN
Semi-Automated Forces System, Third Conference on Computer Generated
Forces and Behavioral Representation, March 17-19, 1993, University of
Central Florida, Orlando, Florida.

[STAN89] Stanzione, T.,Terrain Reasoning in the SIMNET Semi-automated Forces
System, BBN Systems and Technologies Corp., October 1989, Cambridge,
Massachusetts.

[TAMB95] Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, Schwamb,Intelligent
Agents for Interactive Simulation Environments, AI Magazine, Spring
1995: 15-39.

[TECH93] Technical Manual 09674A-10/3,Operators Manual, Assault Amphibious
Vehicle, Commandant of the Marine Corps (AREB), Washington, D.C.
20380-0001, January 1993.

[VANB93] Van Brackle, Petty, Gouge, Hull,Terrain Reasoning for Reconnaissance
Planning in Polygonal Terrain, Third Conference on Computer Generated
Forces and Behavioral Representation, March 17-19, 1993, University of
Central Florida, Orlando, Florida.

[VRAB92] Vrablik, Robert G. and Calder, Robert B.,Networked Simulation of
Multiple Aircraft Using Semi-Automated Forces, Bolt Beranek and
Newman, Inc., Systems and Technologies Division, Cambridge,
Massachusetts, 1992.



66



67

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA     22304-6145

Dudley Knox Library 2
Code 013
Naval Postgraduate School
Monterey, CA     93943-5002

Chairman Ted Lewis, Code CS/Lt 2
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

Professor David R. Pratt, Code CS/Pr 4
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

Professor John S. Falby, Code CS/Fa 2
Computer Science Department
Naval Postgraduate School
Monterey, CA     93943

Captain Thomas J. Sobey 2
437 Palo Verde Ave.
Monterey, CA   93940



68


